首页> 外文OA文献 >Nanostructured Magnetic Films Produced by Magnetic Nanoparticles
【2h】

Nanostructured Magnetic Films Produced by Magnetic Nanoparticles

机译:磁性纳米粒子产生的纳米结构磁性膜

摘要

Gas-phase Fe nanoparticles with a diameter ~ 2nm, have been used in all the nanostructured material in this thesis. In pure Fe nanoparticle systems with different thicknesses, two important parameters the exchange interaction (Hex) and random anisotropy (Hr) were investigated using the Random Anisotropy Model (RAM). This reveals that for the same particle size Hex remains almost constant for varying Fe thicknesses; whereas Hr increases with the increase of Fe film thickness. This is ascribed to increasing strain imposed at the nanoparticle level. The observed high values of Hr are related to an oxide on the cluster surface in these films, whose effect is also observed in low temperature magnetometry data. This shows the appearance of exchange bias in the films. The RAM approach when applied to Fe clusters in Co matrices, reveals much lower values of Hr than found in pure Fe nanoparticles and both Hr and Hex show an increase with the Volume Fraction (VF) of Fe in Co. The increase in Hex is ascribed to the increasing spin moment with Fe volume fraction. The nature of Fe clusters in very thick layers produce a high frequency Ferromagnetic Resonance response in the radio frequency range, which is an important finding for many applications. \udThe EXAFS study of Fe nanoparticles in Cr matrices show no structural modification relative to the bulk bcc structure of both elements. The magnetometry results suggest that in dilute Fe concentration films, the observed decrease in the overall magnetization is due to the development of a nonmagnetic shell at the interface between Fe and Cr at each cluster boundary. This is reinforced by the lack of any evidence of EB. With increasing VF at about 10% of Fe there is strong evidence of the formation of a super-spin-glass (SSG) that shows the characteristic memory effect. Increasing the Fe nanoparticles VF to 20% Fe in Cr, the magnetization exceeds that expected for Fe indicating that the interaction induces some of the Cr to order ferromagnetically. \udCore-shell nanoparticle systems have been synthesised by a method that allows a complete control over the morphology of these assemblies. Atomic investigations in Fe@Cu CS nanoparticles reveal that Fe nanoparticles adopt the fcc structure with a 20 monolayer Cu shell thickness and stay in the bcc structure for 1-2 monolayer thick Cu shells. No alteration in the Fe atomic structure has been reported for different Au shell thicknesses in Fe@Au. The magnetic data show a reduced magnetization of the FM-AFM Fe@Cr CS nanoparticles as compared to the bulk value which is also ascribed to the formation of a non-magnetic Fe shell at the interface.
机译:直径约为2nm的气相Fe纳米颗粒已用于所有纳米结构材料中。在具有不同厚度的纯铁纳米粒子系统中,使用随机各向异性模型(RAM)研究了两个重要参数:交换相互作用(Hex)和随机各向异性(Hr)。这表明,对于相同的粒径,对于不同的Fe厚度,Hex几乎保持恒定。 Hr随Fe膜厚的增加而增加。这归因于施加在纳米颗粒水平的应变增加。在这些薄膜中,观察到的高Hr值与簇表面的氧化物有关,在低温磁力分析数据中也观察到了其作用。这表明薄膜中出现交换偏斜。当将RAM方法应用于Co矩阵中的Fe团簇时,显示出的Hr值要比纯Fe纳米颗粒中的Hr值低得多,并且Hr和Hex都随Co中Fe的体积分数(VF)的增加而增加。随铁体积分数的增加而增加的自旋矩。非常厚的层中的铁团簇的性质会在射频范围内产生高频铁磁共振响应,这对于许多应用而言都是重要的发现。 EXAFS研究表明,铬基体中的铁纳米颗粒相对于两种元素的整体bcc结构均无结构修饰。磁力计结果表明,在稀铁浓度薄膜中,观察到的总磁化强度降低是由于在每个簇边界处的铁和铬之间的界面处形成了非磁性壳。缺乏EB的证据进一步证明了这一点。随着VF大约增加到Fe的10%,有力的证据表明形成了具有独特记忆效应的超级自旋玻璃(SSG)。将Fe纳米颗粒的VF增加到Cr中的20%Fe,其磁化强度超过了Fe的预期磁化强度,这表明相互作用会诱导某些Cr发生铁磁有序化。核壳纳米粒子系统已经通过一种方法进行了合成,该方法可以完全控制这些组件的形态。 Fe @ Cu CS纳米粒子的原子研究表明,Fe纳米粒子采用fcc结构,其单层Cu壳厚度为20,而对于1-2个单层厚的Cu壳则保持在bcc结构中。对于Fe @ Au中不同的Au壳厚度,未报告Fe原子结构的变化。磁数据表明,与体积值相比,FM-AFM Fe @ Cr CS纳米颗粒的磁化强度降低,这也归因于在界面处形成了非磁性的Fe壳层。

著录项

  • 作者

    Qureshi, Muhammad Tauseef;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号